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Abstract 
To meet carbon reduction goals, municipalities, 
universities, and other large organizations need reliable 
and adaptable models that provide detailed building 
performance metrics to efficiently manage future energy 
demand. At the urban scale, models are often restricted by 
access to usage and geometry data and can only accurately 
predict aggregate energy demand based on historic data or 
statistical models. This paper seeks to present a novel 
workflow that uses institutional GIS datasets to produce 
calibrated multi-zone energy models for future scenario 
assessment and to inform building retrofitting options. 
The authors hope that the introduced workflow leads to a 
wider adoption of the involved tools to support the 
environmental strategies of others. 

Introduction 
In recent years, climate change and rapid urbanization 
have each become inevitabilities. By 2050, two-thirds of 
the world’s population will live in urban areas (United 
Nations, Department of Economic and Social Affairs, and 
Population Division 2012), the same year by which every 
nation on earth pledged to obtain zero carbon emissions 
in the 2016 Paris Climate Agreement (Chan and Eddy 
2015). At the same time, traditional association of cities 
as dirty pollution centers have also given way to the 
theory that high density urban centers hold the key to 
feasible sustainable development. Thus, the need for 
sustainable development in urban areas continues to 
increase. Since it is usually undesirable to simply 
demolish and rebuild in dense urban areas, especially in 
developed countries, building retrofitting on massive 
scales must occur to reach carbon reduction targets set by 
nations, states, and municipalities. Thus, the ability to 
analyze the energy use of existing buildings in climate 
change and retrofitting scenarios has become increasingly 
important.  
In order to achieve reliable predictions of future energy 
use, it is necessary to first develop detailed models 
representative of the existing building geometry which 
can be simplified and integrated into energy simulations. 
Advances in the field of building simulation have made it 
easier to integrate building geometry (Dogan and Reinhart 
2017), material definitions, load profiles, and other 
properties (Cerezo, Dogan, and Reinhart 2014). However, 
processes that yield detailed, accurate, and usable 

geometry are often still “error prone and tedious” 
(Schlueter and Thesseling 2009). A streamlined, semi-
automated process of integration of building geometry is 
yet to be developed. This process must also allow for the 
revision of physical building characteristics in order to 
simulate and inform retrofitting scenarios. For the same 
reason, this model must also validated against historical 
energy usage data. One must be able to understand the 
effect of multiple parameters on the data, not simply 
“fudging” the model parameters in order to achieve 
calibration with existing data, but follow a documented 
mathematical process. Problems with such a technique 
have been documented, such as their inaccuracy and time 
and computational intensiveness (Coakley, Raftery, and 
Keane 2014). In energy modeling during the building 
design phase, more emphasis can be placed on the final 
results of the simulation. However, in modeling existing 
buildings it is necessary to place greater emphasis on 
behavior in time and thus to measure calibration success 
based on both aggregate demand and hourly demand. 
An accurate and comprehensive modeling tool is needed 
in order to obtain this degree of resolution. Energy-Plus 
simulation has been touted for its ability to simulate multi-
zone airflow and integrate extensive HVAC systems, 
making it one of the most popular simulation programs in 
the field of building simulation (Coakley, Raftery, and 
Keane 2014; Nguyen, Reiter, and Rigo 2014). 
Current building simulation efforts are often beholden to 
their access to both geometry and energy data, placing 
limitations on calibration accuracy. The author’s home 
institution provides an ideal case study for a variety of 
factors including the good availability of GIS, building, 
and measured high-resolution energy consumption data in 
hourly resolution. Even with reliable usage data, success 
is usually measured by error in aggregated yearly or 
monthly measured vs. simulated energy use (Reinhart and 
Cerezo Davila 2016). 
This paper seeks to calibrate hourly demand curves while 
maintaining high geometric resolution in the models so 
that retrofitting recommendations can be given. 
Producing geometrically detailed energy models usually 
is time and cost-prohibitive as it involves manually 
splitting buildings into multiple zones and providing zone 
descriptions for the resulting enclosed volumes. This 
paper presents an automated workflow that utilizes 
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institutional GIS data-sets to generate multi-zone building 
energy models for scenario evaluation and planning aid. 
Therefore, a variety of different workflows ranging from 
GIS parsing, geometric computing and modeling, data 
matching, energy model setup, simulation and 
optimization tools need to be brought together. Coupling 
these complex systems into one easily manipulated and 
reliable model remains challenging and hence this paper 
seeks to present a feasible and efficient workflow to create 
calibrated models of existing buildings on a university 
campus scale. The paper implements several automata to 
generate relevant input data and seamlessly connects a set 
of existing tools. The workflow aims to produce models 
that are accurate and detailed enough to be used to inform 
design and planning decisions including future retrofitting 
projects and climate change scenarios in pursuance of the 
institutional carbon neutrality targets. or this study three 
buildings have been analyzed. Other campus buildings 
will follow in subsequent studies. 

Simulation 
General Approach 
The process of specifying building properties to achieve 
calibration was carried out in three main parts. First, the 
building geometries were generated from GIS shape files 
and split into thermal zones for each floor. Second, 
building construction, usage schedules, load profiles, and 
ventilation characteristics were specified for each zone. 
Lastly, an automated simulation workflow using 
EnergyPlus (Crawley et al. 2000) and the Archsim plug-
in (Dogan 2016) for Rhino (Robert McNeel & Associates 
2016b) and Grasshopper (Robert McNeel & Associates 
2016a) assigned these parameters to the zones as specified 
using the Goat optimization solver component with local, 
linear approximations (COBYLA) (Flory 2016) and ran 
an simulations based on historical weather data measured 
with an weather station located on the rooftop of one of 
the analyzed buildings. 
The geometries were specified from institutional GIS data 
and constructed using an automated process. GIS data was 
loaded into Rhinoceros and the building footprint 
polygons were parsed from the GIS data. A custom script 
using a modified Douglas-Peuker algorithm was used to  

automatically remove redundant points and to simplify 
overly fine discretization of curvature to keep the overall 
geometric complexity manageable for BEM tools. Special 
attention was given to corner points if they are adjacent to 
a neighboring building. Such points were locked in place 
and were not subject to simplification. Since adjacency 
detection in later steps relies on congruent edges, 
overlapping lines were split until congruent. Further, the 
footprint area is a relevant property. In this case, 
geometric footprint area of the shapefile did not always 
match more accurate data entries from institutional 
sources that specified either footprint or overall floor area. 
Iterative offsetting was used to manipulate the original 
shape to match geometric and data derived foot print area. 
The processed footprints were then automatically broken 
into thermal zones according to the recommendations 
given in ASHRAE 90.1 Appendix G (ASHRAE 2013) 
using straight skeleton based automatic zoning. (Dogan, 
Reinhart, and Michalatos 2016). The zones were then 
extruded to form thermal blocks for each floor of the 
building. Figure 1 shows the buildings and thermal zone 
geometry. The thermal zones were then paired with data 
templates that describe materiality, loads and 
conditioning settings of each zone. Templates are specific 
to each building and include detailed zone descriptions for 
core and perimeter regions located in the basement, 
ground, intermediate and roof floors. For the template 
assignment process, zone adjacencies and overall location 
in the building such as in the basement, ground level/first 
floor, in-between floor or roof zones are detected 
automatically using a custom script that traverses the zone 
and face graph. 
An Excel spreadsheet was used to gather and compile the 
input parameter templates for each zone and then 
dynamically linked to the energy model generation 
workflow in Rhino/Grasshopper. The spreadsheet format 
for model input data aggregation facilitated sharing model 
assumptions with others such as facility management as 
well as updating batches of input data for multiple 
buildings. Further, entries could be updated with a tablet 
or smartphone during field assessment. 
Window to wall ratios were measured from photographs 
taken of building façades and constructions as shown in 
Figure 2. The glazing system specification as well as the 

 
Figure 1: Building geometries colored by floor type and thermal zone divisions 
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constructions for roof, façade and basement were 
specified from field assessment. When construction 
assemblies where unknown, visual inspection and heat 
flux measurements using the GSKIN U-Value Kit were 
performed. Figure 3 shows a long-term study of a wall in 
Building A. U-Values at night time where averaged and 
used as basis to estimate materials and thicknesses of a 
construction. Figures 4-7 show the most important 
constructions used in this study. Table1 provides the U-
Values. In addition to the contextual shading from GIS 
based building volumes, other significant obstructions 
such as large trees or overhangs were added to the model 
based on field assessment observations. 
 

 
Figure 2: Building A façade shown with superimposed 

polygons for window to wall ratio calculation 

Figure 3: Heat flux measurement to determine wall U-
Values for Building A 

Electrical equipment usage schedules were extracted from 
metered electricity demand at building level. Occupancy 
schedules were based on architectural norm assumptions 
(Merkblatt 2006). However, when the electricity demand 
indicated regularly occurring peaks in the morning and 
lows in the evening - the start and end time of the 
occupancy schedules were adjusted accordingly. 
Once all inputs were gathered, a Grasshopper based 
workflow using Archsim and Energy Plus was used to 
batch simulate all models. The models, along with a 
custom weather file constructed from historical weather 
data measured on a neighboring building, were inputted 
into two separate EnergyPlus simulations for heating and 
cooling load calibration. One simulation ran for a week in 
September and the other for a two-week period in 
December. 

The rather short calibration periods were selected due to 
limited data availability of both the metered energy 
demand and weather data. However, the periods are 
somewhat representative since they cover the warmer and 
more humid season in the summer as well as the winter 
period with both an occupied week as well as the winter 
holiday season. 

 
Figure 4: Building A and B roof construction. 

 
Figure 5: Building A and B façade construction 

 
Figure 6: Building C roof construction 

 
Figure 7: Building C facade construction 

 
Table 1: Building properties. 

Building Name Bldg A Bldg B Bldg C 

Floor Area (m2) 6605 4298 2514 

Windows Single Single  Single 

Facade (W/m²K) 1.05 1.05 1.85 

Roof (W/m²K) 0.34 0.34 3.2 

Power density 
(W/m²) 9.33 10.82 46.30 

People (p/m2) 0.199 0.072 0.200 

Infiltration (ACH) 0.809 1.20 0.738 

Internal Mass ratio 
(m2/zone area) 0.150 0.028 0.191 

-20

-10

0

10

20

30

40

24.9 25.9 26.9 27.9 28.9

Heat Flux [W/m²] T1 [°C] T2 [°C]



PREPRINT Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1723

Calibration 
The goal of the calibration step is to validate the produced 
models so that they accurately predict existing conditions. 
The locally measured historic weather data and metered 
demand curves were used for this. Calibration success 
was measured by comparing simulated cooling and 
heating energy with measured usage for the same periods 
in September and December 2015, respectively. A hybrid 
function of the root mean squared error of the hourly 
heating and cooling series and the percent error of the 
aggregate heating and cooling demand, as shown in 
Equations 1 and 2, was used as fitness function. The 
overall percentage difference for the total heating and 
cooling load was weighted slightly higher as the accuracy 
in hourly resolution. 

𝐸" = 0.4 ∗ (𝑅𝑀𝑆𝐸, + 𝑅𝑀𝑆𝐸.) + 0.6 ∗ 𝐷𝑖𝑓𝑓 (1) 

𝐷𝑖𝑓𝑓 = 	 ,56789:;,567:<8
,56789:

+ .==>89:;.==>:<8
.==>89:

  (2) 

The most challenging part of the calibration step is to 
identify parameters that are certain and reliable and those 
that are uncertain. The authors could specify some 
parameters with exact certainty or near certainty, such as 
building constructions, internal mass exposed surface area 
ratio, window to wall ratios, window glazing materials, 
contextual shading and shading systems as well as 
electrical equipment usage. Other parameters were less 
obvious, hard to measure on site and therefore uncertain. 
These could be specified within a reasonable range, but 
no further. Sensitivity analysis was then used to narrow 
down the focus of the calibration. The authors could 
identify two parameters – infiltration rate and people 
density - that had significant impact on the simulation 
results. Based on the authors’ experience, reasonable 
ranges have been assumed to be 0.1 to 3 (ACH), 0.02 to 
0.2 (p/m2) for infiltration rate, people density. Less 
influential parameters were set to the median value within 
the range that was deemed realistic. Linear approximation 
(COBYLA) was used to optimize the most influential 
parameters over a reasonable range. This minimized error 
as specified in Formula 1 and 2. Figures 8 - 11 show 
calibrated usage curves in hourly resolution for both 
heating and cooling demand for buildings A - C. Table 2 
juxtaposes the simulated and metered total heating and 
cooling demand for the calibration periods based on 
which the percentage errors ranging from 7% to -15.4% 
in Table 3 are computed. Metered heating data for 
Building C and cooling data for Building B were not 
available. 
The calibration did yield similar infiltration rates (given 
in Table 1). This is plausible given that all three buildings 
have similar size, materiality and a relatively poor 
construction standard. The estimated people density is 
however very significantly higher in Building A and C 
compared to the estimate in Building B. A and C are both 
used by the Architecture School and densely populated 
and usually used around the clock. 

Table 2: Total heating and cooling demand metered and 
simulated for the summer (09/23/15-09/30/15) and 

winder (12/17/15-12/31/15) calibration periods 

 Bldg A Bldg B Bldg C 

Metered Heating 
Total (kWh/m2) 17.795749 14.163468 N/A 

Simulated Heating 
Total (kWh/m2) 16.50065 14.155996 N/A 

Metered Cooling 
Total (kWh/m2) 2.415758 N/A 2.71354 

Simulated Cooling 
Total (kWh/m2) 2.122319 N/A 2.296996 

 

Table 3: Percentage error in predicted heating and 
cooling demand compared to metered data for the 

summer (09/23/15-09/30/15) and winder (12/17/15-
12/31/15) calibration periods 

 Bldg A Bldg B Bldg C 

Total heating 
percentage error 7% 0.053% N/A 

Total cooling 
percentage error -7.3% N/A -15.4% 

 

Scenario Assessment 
With three buildings calibrated to a satisfactory accuracy 
level in temporal thermal behavior and absolute demand, 
the models were then used to quantify energy impacts of 
climate change predictions and various retrofitting 
scenario. Simulations for one entire year using a Typical 
Meteorological Year (TMY) weather file from the nearest 
airport were performed.  

Climate Change 
As the world’s climate continues to change and large 
entities like universities aim for sustainability and carbon 
neutrality in the long term. To achieve such a goal, it is 
important to predict how buildings will respond to 
changing weather patterns in the future. Using the 
CCWorldWeather Gen tool by Jentsch, Bahaj, and James 
(2008), climate files for the years 2020, 2050, and 2080 
were generated by morphing a TMY from the nearest 
airport. Each building is then analyzed in current and 
future conditions. 
Figures 10 – 12 show how the three buildings respond to 
changing climate. As seen in Figure 10, with no change in 
any parameters besides climate, Building A experienced 
very little overall change in energy demand. A 4% 
reduction in total demand by 2080 can be observed. 
However, as the climate warms the model predicts that a 
greater share of the energy demand will fall on cooling 
loads. In 2015 cooling accounted for 8.8% of the energy 
demand (the sum of heating, cooling, and electrical 
equipment) for Building A. By 2080, this number has 
grown to 23.8%. 
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Figure 8: Building A measured vs. simulated hourly heating energy 

 

 
Figure 9: Building A measured vs. simulated hourly cooling energy 

 

 
Figure 10: Building B measured vs. simulated hourly heating energy 

 

 
Figure 11: Building C measured vs. simulated hourly cooling energy 
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Figure 10: Building A predicted energy demand based 

on climate change. 
 

 
Figure 11: Building B climate change response 

 

 
Figure 12: Building C climate change response 

This represents an increase by 386%. This shift towards 
cooling energy will place a signifiantly higher burden on 
the cooling infrastructure of the authors’ home institution. 
This trend continues for Building B and Building C, as 
seen in Figures 11 and 12, with cooling’s share of total 
energy demand jumping from for 6.6% to 21.3% and 
25.8% to 41.4% from 2015 to 2080, respectively. 
However, neither Building B’s nor Building C’s total 
energy demand remains constant. In the case Building B, 
total energy demand falls by 11.5% by 2080, while 
Building C’s total energy demand grows by 6.2%. 
While heating demand shrinks significantly in all 
buildings, it remains the dominant load in both Buildings 
A and B. This adds to the justification of investment in 
sustainable heating sources even in the face of gradually 
rising temperatures. 
The degree of variance in results between the buildings 
reveals the need for separate building simulations, as each 
building’s unique characteristics make it respond 
differently to climate change. 

Electrical Equipment Demand Reduction 
One parameter likely to change with advances in 
technology is electrical equipment energy demand. In this 
model, lighting is grouped into electrical equipment, as 
the institution’s facilities management does not meter 
electricity separated by end-use. Changing building light 
bulbs from incandescent to compact fluorescent lights 
(CFL) or LED bulbs can save a tremendous amount of 
energy, and is a practice gradually being adopted 
worldwide. In large academic buildings, however, 
upgrading lightbulbs is only one aspect of potential 
electrical equipment energy demand reduction. Switching 
office computers from desktops with separate monitors to 
more efficient laptops is one such measure. A typical 
desktop computer runs at between 80W and 250W, 
whereas laptops can be charged around 45W. 
Equipment energy demand also adds significant heat to 
buildings. In the following study, the authors assume that 
electrical equipment energy demand will decrease by 10% 
by 2020, 25% by 2050, and 50% by 2080. These scenarios 
are analyzed for each building in conjunction with climate 
change. The results are given in Figures 13, 14, and 15.  
As expected, reducing electrical equipment energy has a 
significant impact on the total building energy demand 
and therefore is beneficial for any institution’s bottom line 
and carbon neutrality efforts. Further, the reduction in 
electricity consumption lessens the increase in summer 
cooling loads due to climate change. The reduction in 
internal gains, however, does not lead to an increase in 
heating demand due to the rising exterior temperatures. In 
Building C the reduction stabilizes the heating and 
cooling loads. While these results are somewhat expected, 
quantifying the effect is still valuable. For example, this 
information could be used for targeted plug load reduction 
in buildings with low capacity heating or cooling systems 
to ensure a longer building lifetime if system upgrades are 
difficult or too expensive. 
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Figure 13: Building A site-electrical reduction response 
 

 
Figure 14: Building B site-electrical reduction response 
 

  
Figure 15: Building C site-electrical reduction response 
 

Window Retrofitting 
Another investment that can save significant amounts of 
energy with limited invasion of the existing building is 
window retrofitting. All three of the buildings discussed 
in this paper were built over one hundred years ago and 
contain clear, single pane casement windows. These trap 
very little heat, and cause unwanted infiltration at their 
numerous seems and joints, making them highly 
inefficient during both warm and cool months. 
For this study three retrofitting options are analyzed. The 
first, referred hereafter as DoublePaneLoE2 is a double 
paned window with a low emissivity coating inner surface 
of the outer pane. The second, referred to hereafter as 
DoublePaneLoE3, is a double paned window with the low 
emissivity coating on the interior surface. The third, 
referred to hereafter as TriplePaneLoE, is a triple pane 
window with the low emissivity coating on layers e2 and 
e5, which are the interior of the outermost pane and the 
outermost surface of the innermost pane. Table 2 details 
the thermal properties of each of these windows, as well 
as the existing single clear-paned windows, where Tvis is 
the Visible Light Transmission factor, Uval is the U-
Value, and Shgf is the Solar Heat Gain Coefficient.  
 

Window Type Tvis Uval Shgf 

SinglePaneClr 0.913 5.894 0.905 

DoublePaneLoE2 0.444 1.493 0.373 

DoublePaneLoE3 0.769 1.507 0.649 

TriplePaneLoE 0.661 0.785 0.764 

Table 2: Window Properties 
 

Heating and cooling energy demand for each building was 
calculated for each window option in current and future 
climate scenarios. The metered electrical equipment 
energy was left unchanged but omitted for reporting as the 
retrofits have no effect on this value (no daylight 
simulations for dimming of electric lighting was 
conducted). The results are given as bar charts showing 
overall energy impact from 2015 to 2080 (Figure 16-18) 
and as linearly interpolated time series (Figures 19-21).  
While the results of the climate change and electrical 
equipment energy demand reduction scenarios differ for 
each building, all three buildings have similar responses 
to the window retrofitting scenarios. The introduction of 
a double pane glass leads to a significant drop in cooling 
and heating energy consumption in all three buildings. 
Building A and B yield a 33% and 55% reduction 
respectively, whereas Building C offers only a 17.2% 
savings potential. The triple pane option does not provide 
significant benefits over the double pane glass despite its 
better U-Value. This is a result of the remaining poor 
façade and roof constructions. Thus, investment should be 
directed most immediately to Building B for the greatest 
return on investment. Still all three buildings would 
achieve significant energy demand reductions if all 
windows were replaced by the double pane windows with 
low SHGCs. 
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Figure 16: Energy impact of window retrofitting options 

for Building A from 2015-2080. 
 

 
Figure 17: Current conditions and retrofitting options 

for Building B in future climate scenarios. 

 
Figure 18: Current conditions and retrofitting options 

for Building C in future climate scenarios. 

 
Figure 19: Performance of window retrofitting options 

for Building A over time. 
 

 
Figure 20: Performance of window Retrofitting Options 

for Building B in future climate scenarios 
 

 
Figure 21: Performance of window Retrofitting Options 

for Building C in future climate scenarios 
 

Figures 19 - 21, highlight the change in performance of 
each window type with climate change. 
This result demonstrates the importance of analyzing 
retrofitting options with climate change factored into a 
building energy model. However, at current estimates of 
the quickness and severity of climate change, weather 
morphing should be used to run future scenarios, as the 
performance of certain designs may vary with these 

13.5

6.7 6.4 6.0

6.3

6.6 7.0 7.3

-33.1% -32.3% -32.6%

0

2

4

6

8

10

12

14

16

18

20

Sp DpLoe2 DpLoe3 TpLoe

En
er

gy
 U

se
 fr

om
 2

01
5-

20
80

  
 (M

W
h/

m
2)

Heating Cooling

12.9

4.7 4.6 4.3

3.0

2.3 2.6 2.8

-55.6% -54.8% -55.1%

0

2

4

6

8

10

12

14

16

Sp DpLoe2 DpLoe3 TpLoe

En
er

gy
 U

se
 fr

om
 2

01
5-

20
80

  
 (M

W
h/

m
2)

Heating Cooling

2.6
1.3 1.2 1.1

5.5

5.4 5.6 5.8

-17.2% -15.2% -13.9%

0

1

2

3

4

5

6

7

8

Sp DpLoe2 DpLoe3 TpLoe

En
er

gy
 U

se
 fr

om
 2

01
5-

20
80

  
 (M

W
h/

m
2)

Heating Cooling

198

200

202

204

206

208

210

212

214

2015 2025 2035 2045 2055 2065 2075

Pr
oj

ec
te

d 
En

er
gy

 U
se

 (k
W

h/
m

2/
a)

DP LoE2 DP LoE3 TP LoE

102

104

106

108

110

112

114

116

118

2015 2025 2035 2045 2055 2065 2075

Pr
oj

ec
te

d 
En

er
gy

 U
se

 (k
W

h/
m

2/
a)

DP LoE2 DP LoE3 TP LoE

90

95

100

105

110

115

120

2015 2025 2035 2045 2055 2065 2075

Pr
oj

ec
te

d 
En

er
gy

 U
se

 (k
W

h/
m

2/
a)

DP LoE2 DP LoE3 TP LoE



PREPRINT Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1728

climate shifts, prompting forward thinking designers and 
engineers to make different design decisions. 

Conclusion 
This paper has demonstrated a feasible and efficient 
workflow to create calibrated models of existing buildings 
that are accurate and detailed enough to be used to inform 
decisions for building retrofitting in various climate 
scenarios in pursuance of carbon neutrality targets. An 
automated process to generate building energy models 
from institutional datasets has been outlined. 
The usefulness of such the presented workflow was 
demonstrated in several scenario evaluations including 
climate change, electrical equipment energy demand 
reduction and window retrofitting. The information 
obtained can be used to select between options, to inform 
policy and for targeted investment. This process of 
building simulation and its results have underscored the 
importance of conducting analyses of separate buildings 
even at campus or neighborhood scale. While most of the 
results support the intuition of an experienced energy 
modeler, there is great value in the ability to quantify 
energy impacts at high spatial and temporal resolution. 
Unless sufficient funds are available for large scale 
overhauls, efforts in pursuit of carbon neutrality, are most 
likely to be carried out in small steps. To maximize the 
impact of these gradual investments, fast methods for the 
generation and calibration of individual building energy 
models are needed. Hence, it is the authors’ intention to 
conduct future studies of this type on more campus 
buildings and to see the results of these studies used to 
inform real change in pursuit of the institution’s carbon 
neutrality goal. 
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